
Scripting For Java

Andrej Vckovski
Netcetera AG

Zypressenstrasse 71
8040 Zurich, Switzerland

andrej.vckovski@netcetera.ch

Michel Mathis
Netcetera AG

Zypressenstrasse 71
8040 Zurich, Switzerland

michel.mathis@netcetera.ch

ABSTRACT
Tcl has been initially developed as an embeddable command lan-

guage to provide what we now call ”scripting” to complex applica-

tions. The ”scripting” or ”high level language” approach to provide

control to applications from command lines, configurations files or

”macros” has been very successful and a major winning case for

Tcl.

In the last six years, Java appeared as a programming language and

runtime environment, and – due to many factors – gained a large

popularity in the area of business computing. Therefore, the need

to embed high-level languages for various reasons into Java-based

applications was desired as much as it was for C/C++ and other low

level language based applications. Java has sometimes been seen as

a ”pariah” within the Tcl community, but still there are very useful

projects and publications exploring various aspects regarding the

relationship between Tcl and Java.

The Tcl/Java integration projects (tclBlend, Jacl) provide an em-

beddable Tcl interpreter written entirely in Java and a very powerful

interaction between Java and the scripting level. As we have been

and are using Tcl very much in our projects, Jacl would have been

the logical choice for a scripting environment for Java. Nonethe-

less, we decided to do a comparison and evaluation project to com-

pare Jacl with other popular scripting environments for Java such as

Jython (having python as scripting language) and Rhino (JavaScript).

Here, we compare these environments based on a wide set of crite-

ria such as popularity, library support, performance, ease-of-integration,

memory footprints, licensing models and so on.

1. INTRODUCTION
Java has become a major programming language in the last six or

seven years. There are many reasons why Java managed to es-

tablish itself that fast compared to other programming languages

that needed many more years to find their way into the the “main-

stream”.

Regardless of the corporate backing and marketing Java had and

still has, the language itself and supporting infrastructure (libraries,

development tools, deployment tools, runtime support and so on)

has many useful features and properties, and it would be unfair

to attribute its success only to the marketing of a few commercial

organizations.

As a young company providing software development services to

corporate clients in the area of Internet-oriented applications, Netcetera

did very early start doing developments in Java. At the same time,

we are using Tcl on a broad basis for our applications. Tcl has

been designed to be embedded into larger applications, and that

was what we were frequently doing. Using Tcl to provide

• powerful configuration facilities,

• command line interfaces to the end user,

• simple scripting of our applications abilities,

• gluing parts of the applications together,

• providing a customization layer for the user and more

proved to be a very powerful design “pattern”. For our Java-based

applications, it was therefore natural to use the same design should

it be required in a project.

There are a few comparisons of existing embeddable script inter-

preters for Java (e.g., [7, 9]), but we still decided that we have

to do an evaluation of our own to come up with a decision on

which one to use. As a company doing lots of Tcl development

anyway, it seems to be very straightforward to use the Java-based

Tcl-implementation (Jacl) right away without further investigations

(assuming that there are no hard no-go issues).



However, Tcl itself has not had always a broad backing by some of

our engineers, and so it would have been counted as a weird man-

agement decision if we would have decided to use Jacl, by-passing

an evaluation of existing tools (actually it turns out that such emo-

tional aspects do have a quite a large impact on these evaluations).

The first part of this paper discusses the methodology that we have

planned to use for the assessment of the advantages and disadvan-

tages of various approaches. The second part contains the actual

results for three alternatives (Jacl, Jython and Rhino) we have eval-

uated in more depth. The various lessons we have learned are sum-

marized in the last part together we the decision we have actually

taken.

2. METHODOLOGY
2.1 Overview
In information technology and computer science it is a very com-

mon task to compare technologies that are meant to be suitable for

a certain task. People compare hardware, operating systems, pro-

gramming languages, frameworks, methodologies and much more.

And it is very clear that the more complex or versatile a thing under

evaluation is, the more difficult a comparison gets. For example,

comparing the execution speed of processors is a fairly standard-

ized task and there are well-defined benchmarks for that, main-

tained by independent benchmark standardization bodies. But even

there, these standardized benchmarks often allow for much subjec-

tivity when discussing the results. Comparing more abstract enti-

ties such as programming languages gets much more harder, and it

is very typical to see long and heated debates on newsgroup once

such a comparison is made (see also [10]).

We were very aware that our evaluation will not meet scientific

precision nor will it be independent of our goals. Most of the cri-

terias are driven and weighted by their fitness for our needs. It

will become evident later on, that – even if we allow for a certain

subjectivity (“we want to know which one is best forour goals”)

– any general statement is very difficult and ultimately, driven by

personal taste and experience. Still, it is useful to compare the ap-

proaches, also to give possible indications for the various owners

or maintainers where a potential development could be headed to.

The different criteria we investigated can be divided into three groups

• Hard criteria such as performance, memory footprint and so

on

• Language features such as embedability, security aspects

• Soft criteria such as hipness, community support and accep-

tance, availability of third-party tools or literature

The following sections will define these criteria and our expecta-

tion, i.e., what value of that criteria is considered to be positive and

what negative.

2.2 Hard criteria
2.2.1 Runtime performance

Whenever programming languages are compared, execution per-

formance is frequently used as discriminator. There are very well-

prepared performance benchmarks available (e.g., [1, 8]), having

caused long discussions on various newsgroups. In the context of

an embedded interpreter, execution speed is a somewhat delicate

issue. That is, it very much depends on what the script interpreter

is needed for. If you want simply a command line to be parsed

with variable substitution and eventually dispatching into a func-

tion that is written in Java, execution speed will probably never

matter. However, if you plan to run frequently large scripts of sev-

eral hundred lines, it might be very well a critical issue. Generally,

performance is not an issue if it is not perceived in any way by the

user. If the parsing of a command line in a single-user applica-

tion takes 10 milliseconds with system A and 60 milliseconds with

system B, the difference will not be relevant. So if a system does

reduce its complexity (e.g., by not having an embedded byte-code

compiler) for the cost of lower execution speed, this trade-off might

be very much in favor of that system.

Still, we performed a few academic performance tests in order to

have relative values for the various environments. We measured:

• time to initialize interpreter subsystem

• time for first evaluation of a test script

• average time for a large number of follow-up executions

2.2.2 Code size
The size of the compiled Java code that needs to be included into

the final application, i.e., the size of the interpreter does have in-

sofar an impact as it does possibly blow-up the size of the host

application1. So less is better.

2.2.3 Memory footprint
The interpreter should not add too much runtime memory usage to

the host application. Java applications are often quite memory hun-

gry and therefore, it matters if another add-on “wastes” too much

primary storage. Here also, less is better.

2.2.4 Number of source code lines
The LOC (lines of code) of the interpreter implementation is a very

rough measure for its complexity. As with most other criteria, it

is easy to measure but hard to interpret. A large LOC value could

mean:

• a lot of functionality (+)

• thorough implementation (+)
1We use the termhost applicationfor the application that does em-
bed the interpreter



• higher risk for bugs (–)

• too much complexity (–)

2.3 Language features
2.3.1 Ease of embedding

We would like to have the ability to extend the host application with

an interpreter without having to make too many compromises for

the host application. I.e., the interpreter should not pose high re-

quirements upon the host application. In earlier days for example,

it was sometimes not too easy to embed classic Tcl into an appli-

cation if the application had an own event loop (e.g., a GUI event

dispatcher).

2.3.2 Sand-boxing the scripting language
Java has as mentioned before, very powerful introspection capa-

bilities2. This offers a lot of possibilities when designing a lan-

guage integration of, for example, a scripting language into Java.

All script interpreters we have encountered did indeed use this ca-

pabilities and provide a lot of useful access to Java objects from

the scripting side. However, you might want to control the amount

of access that is allowed from the scripting side into your host ap-

plication. Actually, in typical embedding cases (using the script

language as a “command language” in the original sense of Tcl)

you even want to be very explicit about what “commands” the host

application offers. Also, it is frequently necessary to inhibit certain

functionalities such as for example file operations.

2.3.3 Running in a sand box
In contrast to the previous criterion, it is sometimes also neces-

sary, that the interpreter is functioning within aJavasand-box. I.e.,

within a runtime environment with lesser capabilities such as an

unsigned applet in a Web browser. That is, it is required that the

interpreter can limit its functionality so that it won’t raise security

violation exceptions. It would be a naive assumption, that if on

the scripting side no “forbidden” things are used it will automati-

cally please the Java sand-box. An interpreter might for example

initialize certain subsystems (e.g., file access, getting the systems

environment) even if they are not used later on. Here our test case

is the ability of the interpreter to run in anunsigned applet.

2.3.4 Error messages and exceptions
When embedding an interpreter in the host application it will be

also necessary to provide sensible feedback to the user for any

evaluation errors such as syntax problems, undefined variables and

so on. Since the parsing and evaluation is done by the embedded

interpreter, it is also the interpreter that generates such exception

messages. These messages need to be in a form that they can be

intercepted and presented in a way defined by the host application.

E.g., it might be necessary to provide translations into different lan-

guages. It is therefore not always desired to pass the interpreter’s
2Access to class properties such as attributes and their types, meth-
ods and their signatures, inheritance relationships and so on at run-
time

messages directly to the user. We would expect either a good cat-

egorization (by virtue of different Java exceptions, for example) or

sensible, translatable error codes.

2.3.5 Controlling input and output channels
As with the exceptions (2.3.4) and sand-boxing (2.3.2) mentioned

above, the standard input and output channels of embedded inter-

preters must be controllable by the host application. E.g., the host

application might want to display any output into a console window

or a log file.

2.4 Soft criteria
2.4.1 Licensing model

The licensing model of the interpreter is of high importance when

embedding the interpreter into an application. An embedded inter-

preter has the same role as any other “off-the-shelf” components

that are used in an application and therefore, the same questions

need to be asked beyond the technical capabilities of that compo-

nent:

• Does the component and its licensing model increase the cost

of the product?

• Do we have full control over the component, i.e., are we sure

that the component does not have hidden features that impair

the applications stability, security?

• Is therefastsupport available?

• Can we maintain the component even if its vendor goes out

of business, gets bought by the competition or decides for

whatever reason that the component is not anymore strate-

gic?

Having mentioned these issues it becomes very evident that only an

Open Sourcetype of licensing model will provide sensible answers

to these questions. Therefore, we did only investigate Open Source

integration languages to start with.

2.4.2 Community maintenance
As a consequence of Open Source licensing we need to assess

a product’s maintenance from the community. Typical reposito-

ries for Open Source projects such asSourceForgeusually pro-

vide numbers such as project activity figures that indicate whether

a project is actively maintained. Also, the dates of the latest re-

leases, mailing list activities are good indicators. It is important,

however, not to misinterpret a project that did not release anything

for a year as necessarily abandoned. There are, for example, many

GNU projects that have not released anything for years because

there is simply no need for a new version3.

3Or consider TEX



2.4.3 Ease of use
Embedded scripting languages are most often intended to be used

by the end users of the application, either as a command line in-

terface or for automation and similar things. That is, the users do

typically have no or very limited programming experience. There-

fore, it is very natural to search for the integration language that

is the easiest to use. Unfortunately, there are no simple criteria to

assess how easy something is, and it is a clearly subjective assess-

ment. For example,Python’s well known indentation feature for

marking blocks has generated many heated debates between advo-

cacy groups of various language camps. I would dare to claim that

for non-programmers the meaningful indentation would be rather

confusing than adding “better readability for humans”, but I am

sure there are as many people that are strongly convinced by the

opposite.

2.4.4 Availability of3rd-party documentation
An embedded and integrated language in your application adds

much power and elegant solution to customization, automation and

other aspects. These add-ons will need documentation, support and

training. When using a well-known language such asTcl or Python,

there will be a lot of literature available in book stores and on the

Internet. There are also risks involved with external documentation.

For example,JavaScriptis today mostly used within Web browsers.

Books on JavaScript therefore focus on that usage of JavaScript

and often make no clear separation between language features and

browser/document model features availablethroughthe language.

As a matter of fact, it is even good that there is no clear separation,

since the user (in our case of non-developers, power users) should

not care whether something is a built-in function or provided by the

host-application. For our user,everythingis provided by the host

application4.

2.4.5 Acceptance by developers
The experience from many project shows that the acceptance by

developers for any component or platform to can be a killer or suc-

cess factor. If, for example, the database engine used is considered

to be boring and legacy stuff, every problem in the project will

eventually be due to the database. For an integration language, this

acceptance issue is even more important. Most developers like to

talk about languages, their shortcomings and great features, and

most of them do also have strong opinions about what is good and

what is not. Choosing a language which is considered to be bad,

out, non-whatever-oriented or so can doom a project. However, it

would be fatal if only such taste issues would dominate over more

important criteria.

4A Tcl side note: Tcl as an language that was meant to be embed-
dedby designdoes have many applications of itself where it is not
calledTcl and where the users have no clue that they are actually
using Tcl.

3. EVALUATION RESULTS
3.1 Candidates
The list of scripting languages for Java contains most of the cur-

rently widely-used scripting languages in general. The following

list describes the candidates we choose for our evaluation and its

motivation.

Jacl Jacl is part of the Java/Tcl integration set. It provides an al-

most full implementation of the Tcl 8.3. Jacl as a candidate

was very natural: On the one hand, we have already been us-

ing the initial versions of Jacl in a project as early as 1998

and had some experiences with it. On the other hand, most

of our development which is not Java is Tcl. So there is quite

a large body of knowledge on Tcl available [11, 2].

Jython The python implementation in Java (was called JPython

earlier) is an almost full implementation of the features of

Python (with synchronized version numbers). Jython has not

only gained interest for embedding purposes but also as a

high-level replacement for Java, i.e., allowing to write pro-

grams in python that run on a JVM (Java Virtual Machine)

and that use that large set of available Java packages [3].

Rhino Rhino is an implementation of JavaScript written in Java.

The project was started at Netscape in 1997 as an embedded

script interpreter for a Java-only browser. Meanwhile, Rhino

is part of the Mozilla project [5].

Other languages There are many more scripting languages avail-

able for Java such as implementation of theRubyandLua

languages, functional languages (Lisp, Scheme) and many

more (a good overview is given in [12]). We have not in-

cluded other languages in our evaluation for efficiency rea-

sons.

The examples in figure 1,2 and 3 show the embedding of an inter-

preter. In the case of Rhino (figure 3) it is interesting to note that

Rhino maintains a separatescopeobject. This allows an easy im-

plementation of cases where a certain script (e.g., an event handler)

can be executed in different scopes (e.g., for different windows or

widgets, respectively).

3.2 Results
3.2.1 Hard facts

The test results for a few performance tests and the other quantifi-

able criteria mentioned above are summarized in table 1. These re-

sults need to be interpreted with care. The performance tests should

only give a very rough impression and are far from being a well-

calibrated and fair benchmark. Still, it shows that the performance

of all three candidates are within a usable range. We did deliber-

ately not include the detailed test scripts here to stress the qualita-

tive nature of these comparisons. The values indicate normalized

times, i.e., relative to the fastest of the corresponding category.



import tcl.lang.*;

public class JaclTest extends ScriptTest {

static Interp interp;

public void init() {

interp = new Interp();

}

public Object execute(String s) throws Exception {

interp.eval(s);

return interp.getResult();

}

}

Figure 1: Jacl (test driver)

import org.python.util.PythonInterpreter;

import org.python.core.*;

public class JythonTest extends ScriptTest {

static PythonInterpreter interp;

public void init() {

interp = new PythonInterpreter();

}

public Object execute(String s) {

interp.exec(s);

// the script should leave the result

// in the local variable ’result’

return interp.get("result");

}

}

Figure 2: Jython (test driver)



import org.mozilla.javascript.*;

public class RhinoTest extends ScriptTest {

static Context cx = null;

static Scriptable scope;

public void init() {

cx = Context.enter();

scope = cx.initStandardObjects(null);

}

public Object execute(String s) throws Exception {

Object result= cx.evaluateString(scope, s, "<cmd>", 1, null);

return result;

}

}

Figure 3: Rhino (test driver)

Jacl Jython Rhino

version 1.2.6 2.1 1.5R3

released April, 2001 December, 2001 January, 2002

performance

initialization 1.0 2.4 1.2

single/infrequent execution 1.3 2.4 1.0

repeated execution 2.5 1.0 2.1

memory footprint MB 3.9 7.1 4.5

code size KB 784 1426 761

lines of code 52678 74863 56685

Table 1: Hard criteria



3.2.2 Language-features
Table 2 contains the summarized assessment of the language fea-

tures compared. It turns out that all three candidates have fairly

similar capabilities (where the numbers give a ranking).

3.2.3 Soft criteria
The soft criteria shown in table 3 do not show significant differ-

ences either. The numbers in the table are a subjective ranking

between those three candidates.

All three interpreters are distributed under an open source license,

with Jacl having the most liberal (BSD style; Rhino has Mozilla

style and Jython a “Jython license”, which is somewhat compli-

cated because of inherited licenses).

The community maintenance in terms of project activity seems to

be best with Rhino, but all projects have activities which where

younger than 10 days at the time of this writing, so no one is

“dead”. When used for user level scripting of applications, we be-

lieve that Tcl provides the easiest access. Jython starts to be power-

ful when using the Java integration (accessing Java classes) and us-

ing object-oriented features which are not easy for non-programmers

to start with. Also, Rhino is much more powerful as programming

language than as “command line interpreter”.

Developers on the other hand, like Jython very much because Python

is considered hip. JavaScript has too much connotation of doing

weird Browser-side scripting that is dependent on every minor web

browser release and therefore, is not a very powerful name within

the developer’s community. For young programmers, Jacl seems to

have inherited some of the dust Tcl is said to have.

3.3 So what?
The results shown above do not allow a quick and easy decision.

As a matter of fact, we have just gotten the results of so many

evaluations and comparisons done in the information technology

community: Your choice depends very much on what you want to

do, i.e., there is no general result possible because and the nifty

details will later on turn to be either annoying or successful. We

did actually not expect when starting the evaluation to have a clear

winner in the end, but we have still been surprised that none of the

candidates showed real show-stoppers that would have eliminated

them.

So what to do? If the choice for a script interpreter cannot be de-

rived from numbers as we engineers would like, other decision pro-

cesses have to take place. While we’ll be continuing this work

with more in-depth analyses in the future, we decided for a current

project to defer the decision by using IBM’sBean Scripting Frame-

work(BSF, see also [6, 4]). BSF is an architecture for incorporating

scripting into Java applications and applets that adds an abstraction

layer on top of script interpreters. In theory, it is possible to change

the script interpreter later on. To use such an abstraction frame-

work does not only provide a generic solution, it is also actually a

helper to overcome the decision problem if you don’t dare to decide

what subsystem to use. The same is, for example, true for database

systems and the like, where a generic database layer does not nec-

essarily mean that you want to replace the database in future, but it

still generates less direct dependency and therefore, responsibility

for the decision.

The usage of BSF allows us to continue our assessment on various

script interpreters without having to wait on further results for our

current projects.

4. CONCLUSIONS
4.1 Scripting for Java
Our experiences with a few larger Java applications with embedded

scripting have shown that the design pattern of using high-level

languages within lower level languages is very useful for Java as

it was for C/C++ projects. The one-and-only style of marketing

Java experienced in the last decade made many people believe that

you have to decide between scripting and Java. Beyond the hype,

we see that Java is a wonderful programming language and rich

platform to develop complex systems, but it is not a silver bullet.

4.2 Evaluate?
When starting this evaluation we fell into the trap we experienced

many times before. The set-up and question was easy: “What script

interpreter should we use in the future for our Java applications?”

During the subsequent evaluation process we realized again that

the results we will get with a fair amount of time will not really

help us in our decision. However, there were many side-benefits

from our investigation, the most important maybe being our trust

in all three script interpreters. No one really showed a big problem

or annoyance. Evaluations of component for your applications in

most cases lead to a negative selection (things you will definitely

not choose) rather than a positive selection (“the winner is...”), and

this is a useful result as well.

4.3 The case for Tcl
The Tcl–Java integration consisting of Jacl and tclBlend have been

one of the first scripting implementations available in the Java arena.

Both components provide very powerful scripting of Java applica-

tions, on-the-fly work with Java classes in tclBlend, using it as a

unit test framework and so on. Yet, other approaches such as Jython

or Rhino seem to have better resonance currently, not very different

as it is in the “classic” Tcl arena. But still, it might be an oppor-

tunity that the connection to Java will help Tcl to gain again some

more popularity.

5. REFERENCES
[1] D. Bagley. The great computer language shootout.

http://www.bagley.org/˜doug/shootout .

[2] Tcl java integration.

http://tcl.activestate.com/software/java .



Jacl Jython Rhino

Ease of embedding rank 1 1 1

Sand-boxing the scripting language rank 2 2 1

Running in a sand box rank 2 2 2

Error messages and exceptions rank 1 3 2

Controlling input and output channels rank 2 1 3

Table 2: Language features

Jacl Jython Rhino

Licensing model rank 1 2 3

Community maintenance rank 3 2 1

Ease of use rank 1 3 2

Availability of third-party documenta-

tion

rank 1 1 1

Acceptance by developers rank 3 1 2

Table 3: Soft criteria

[3] Jython.http://www.jython.org .

[4] Bean scripting framework.http://oss.software.

ibm.com/developerworks/projects/bsf .

[5] Rhino: Javascript for java.

http://www.mozilla.org/rhino .

[6] M. Johnson. Script javabeans with the bean scripting

framework.http://www.javaworld.com/

javaworld/jw-03-2000/jw-03-beans.html ,

March 2000.

[7] D. Kearns. Java scripting language: Which is right for you?

http://www.javaworld.com/jw-04-2002/

jw-0405-scripts.html , April 2002.

[8] B. W. Kernighan and C. J. V. Wyk. Timing trials, or, the trials

of timing: Experiments with scripting and user-interface

languages.http://cm.bell-labs.com/cm/cs/

who/bwk/interps/pap.html .

[9] R. Laddad. Scripting power saves the day for your java apps.

http://www.javaworld.com/jw-10-1999/

jw-10-script.html , October 1999.

[10] C. Laird. Cameron laird’s personal notes on language

comparisons.http:

//starbase.neosoft.com/˜claird/comp.

lang.misc/language_comparisons%.html .

[11] I. K. Lam and B. Smith. Jacl: A tcl implementation in java.

In Proceedings of the 5th Annual Tcl/Tk Workshop.

USENIX, July 1997.

[12] R. Tolksdorf. Programming languages for the java virtual

machine.http://grunge.cs.tu-berlin.de/

˜tolk/vmlanguages.html .

6. ACKNOWLEDGMENTS
Many other persons at Netcetera supported various aspects of this

work, especially Joachim Hagger,Simon Hefti and Jason Brazile.


